Assignment for class 12

General direction for candidates: Notes provided must be copied in Maths copy and then homework should be done in the same copy.

Determinant (Properties of determinants)

- Helps in simplifying its evaluation by obtaining maximum number of zeros in a row or a column
- These properties are true for determinants of any order.

Note: (For proof of properties refer to the video link in you tube provided by school)

Property 1: If each element of a row (or column) of a determinant is zero, then its value is zero.

Property 2:If each element on one side of the principal diagonal of a determinant is zero then the the value of determinant is the product of the principal diagonal elements.

Property3:The value of determinant remains unchanged if its rows and columns are interchanged.

Note :It follows from the above property that if A is a square matrix, then $\det(A^T)=\det(A)$ (where A^T is transpose of A)

Property 4: If any two Rows (or columns) of a determinant are interchanged, then the value of the determinant changes by minus sign only.

Note: It follows from above property that if any row (or column)of a determinant be be passed over m rows (or column) , then the resulting determinant $\Delta = (-1)^m \Delta$.

Property 5: If two parallel lines (rows or column) of a determinant are identical (all corresponding elements are same), then the value of determinant is zero.

Property 6: If each of element of a row (or a column) of a determinant is multiplied by the same number **k** ,then the value of the new determinant is **k** times the value of the original determinant.

Note:

- By the above property, we can take out any common factor from any one row or any one column of a given determinant.
- If kA is matrix obtained by multiplying each element of matrix A with number k therefore, if A is a square matrix of order n, then $|kA| = k^n |A|$ (Because common factor k will be taken out from each of n-rows or n-columns) thus if each element of a determinant Δ is multiplied by the same number k and Δ_1 is the new determinant then

 $\Delta_1 = k \Delta \text{ if order of } \Delta = 1$ $\Delta_1 = k^2 \Delta \text{ if order of } \Delta = 2$ $\Delta_1 = k^3 \Delta \text{ if order of } \Delta = 3$

NOTE * (Also mentioned in assignment 2...k is no. multiplied to each element of matrix A)

It follows from property 5 & property 6:

If two parallel lines (rows and column) of a determinant are such that the elements of one line are equi-multiples of the elements of the other line, then the value of determinant is zero)

Property 7:If each element of a row (or column) of a determinant consist of two or more terms, then the determinant can be expressed as the sum of two or more determinants whose other rows (or columns) are not altered.

Property 8: If to each element of a row(or a column) of a determinant be added the equi-multiples of the corresponding elements of one or more rows (or columns), the value of the determinants remain unchanged.

Property 9:The sum of the product of elements of any row (or column)with the cofactor of the corresponding elements of some other row (or column) is zero .

Elementary Operations: If Δ be Determinant of order n , where $n \ge 2$: R_1, R_2 its first row, second row,.....and C_1, C_2 ,.....denote its first column,second column,....respectively.

- The operations of interchanging the ith row and jth column of Δ is denoted by $R_i \longleftrightarrow R_j$ and for column $Ci \longleftrightarrow Cj$
- Operation of multiplying each element of the ith row of determinant by number k will be denoted by $R_i \rightarrow kR_i$ and for column $C_i \rightarrow kC_i$

Note: If we apply $R_i \rightarrow kR_i$ or $C_i \rightarrow kC_i$, then we multiply determinant by $\frac{1}{k}$ in the same step

• The operation of adding to each element of the ith row of Δ , k times the corresponding elements of the jth row (j≠i) will be denoted by $R_i \rightarrow R_i + kR_j$, and for column $C_i \rightarrow C_i + kC_i$

Exercise 4.2. Q3i) Evaluate without expanding
$$\begin{bmatrix} 102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{bmatrix}$$

Operating $R_1 \rightarrow R_1 - 6R_3$ (Property 8), we get

$$\begin{vmatrix} 102 - 6 \times 17 & 18 - 6 \times 3 & 36 - 6 \times 6 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{vmatrix} = 0$$
 (By property 1)

Homework Exercise 4.2 Q3ii) Q4.i),iii)

Q5i) Given A is Square matrix of order 2, |A|=-5, Find |3A|

Since
$$|KA| = K^n |A|$$
 (refer to Property 6)

$$|3A| = 3^2 |A| = 9 (-5) = -45$$

Homework : Exercise 4.2 Q5 (iii),(v) & (vi) Q7 (Hint for Q7: $|A^m| = |A|^m$, if A is Square matrix &mEN)

Q8. Using properties of determinants solve for x:

Given
$$\begin{vmatrix} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0$$

$$\Delta = \begin{vmatrix} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{vmatrix}$$

Applying $R_1 \rightarrow R_1 + R_2 + R_3$

$$= \begin{vmatrix} 3x+a & 3x+a & 3x+a \\ x & x+a & x \\ x & x & x+a \end{vmatrix}$$

Taking (3x+a) common from R₁

$$= (3x+a)\begin{vmatrix} 1 & 1 & 1 \\ x & x+a & x \\ x & x & x+a \end{vmatrix}$$

Applying $C_1 \rightarrow C_1 - C_2$

$$= (3x+a)\begin{vmatrix} 1 & 0 & 1 \\ x & a & x \\ x & 0 & x+a \end{vmatrix}$$

Applying $C_3 = C_3 - C_1$

$$= (3x+a) \begin{vmatrix} 1 & 0 & 0 \\ x & a & 0 \\ x & 0 & a \end{vmatrix}$$

=
$$(3x+a)(1\begin{vmatrix} a & 0 \\ 0 & a \end{vmatrix})$$
 = $(3x+a)(a^2)$ (Expand along R₁)

therefore $(3x+a)(a^2)=0$ since $\Delta=0$

$$x = \frac{-a}{3}$$

Homework: Q,11 i) & ii) Q12 i)&ii) (Note; Solution of Q12iii) is there in the video),29 iii)

Q16. using properties of determinant prove the identities

$$\begin{vmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{vmatrix} = \begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix} = (x - y)(y - z)(z - x)$$

= By applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$

$$\begin{vmatrix} 1 & x & x^2 \\ 0 & y - x & y^2 - x^2 \\ 0 & z - x & z^2 - x^2 \end{vmatrix} = \begin{vmatrix} 1 & x & x^2 \\ 0 & y - x & (y - x)(y + x) \\ 0 & z - x & (z - x)(z + x) \end{vmatrix}$$

$$= (y-x)(z-x)\begin{vmatrix} 1 & x & x^2 \\ 0 & 1 & y+x \\ 0 & 1 & z+x \end{vmatrix}$$
 Taking (y-x) common from R₂ & (z-x) common from R₃

=
$$(y-x)(z-x)$$
 (1) $\begin{vmatrix} 1 & y+x \\ 1 & z+x \end{vmatrix}$ Expanding along R₁

$$=(y-x)(z-x(z+x-y-x) = (y-x)(z-x)(z-y)$$

$$= (-1)(x-y)(-1)(y-z)(z-x)$$

$$=(x-y)(y-z)(z-x)$$

Similarly solve
$$\begin{vmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{vmatrix}$$
 as **Homework**

Homework Q17, Q.18ii) Q,22,

Q.20
$$\begin{vmatrix} 1 & \alpha & \alpha^2 + \beta \gamma \\ 1 & \beta & \beta^2 + \gamma \alpha \\ 1 & \gamma & \lambda^2 + \alpha \beta \end{vmatrix} = 2(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)$$

By applying property 7

$$= \begin{vmatrix} 1 & \alpha & \alpha^2 \\ 1 & \beta & \beta^2 \\ 1 & \gamma & \gamma^2 \end{vmatrix} + \begin{vmatrix} 1 & \alpha & \beta\gamma \\ 1 & \beta & \gamma\alpha \\ 1 & \gamma & \alpha\beta \end{vmatrix}$$
 (now proceed as in Q16)

Q21, Using properties prove :
$$\begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ac & bc & c^2 + 1 \end{vmatrix} = \begin{vmatrix} a^2 + 1 & b^2 & c \\ a^2 & b^2 + 1 & c \\ a^2 & b^2 & c^2 + 1 \end{vmatrix} = \mathbf{1} + \mathbf{a}^2 + \mathbf{b}^2 + \mathbf{c}^2$$

$$\begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ac & bc & c^2 + 1 \end{vmatrix}$$

Taking \boldsymbol{a} common from R_1 , \boldsymbol{b} common from R_2 & \boldsymbol{c} common from R_3

$$= abc \begin{vmatrix} \frac{a^2+1}{a} & b & c \\ a & \frac{b^2+1}{b} & c \\ a & b & \frac{c^2+1}{c} \end{vmatrix}$$
 Property 6

= operate $C_1 \rightarrow aC_1$, $C_2 \rightarrow bC_2$, & $C_{3\rightarrow}cC_3$ ie (Multiplying C_1 by a, C_2 by b, & C_{31} by c we get

$$\frac{abc}{abc}\begin{vmatrix} a^2+1 & b^2 & c^2 \\ a^2 & b^2+1 & c^2 \\ a^2 & b^2 & c^2+1 \end{vmatrix} = \begin{vmatrix} a^2+1 & b^2 & c^2 \\ a^2 & b^2+1 & c^2 \\ a^2 & b^2 & c^2+1 \end{vmatrix} \text{ proved}$$

$$\begin{vmatrix} a^2 + 1 & b^2 & c^2 \\ a^2 & b^2 + 1 & c^2 \\ a^2 & b^2 & c^2 + 1 \end{vmatrix}$$

By operation $C_1 \rightarrow C_1 + C_2 + C_3$

$$\begin{vmatrix} 1+a^{2}+b^{2}+c^{2} & b^{2} & c^{2} \\ 1+a^{2}+b^{2}+c^{2} & b^{2}+1 & c^{2} \\ 1+a^{2}+b^{2}+c^{2} & b^{2} & c^{2}+1 \end{vmatrix}$$

by taking $(1 + a^2 + b^2 + c^2)$ common from C_1

=
$$(1 + a^2 + b^2 + c^2)$$
 $\begin{vmatrix} 1 & b^2 & c^2 \\ 1 & b^2 + 1 & c^2 \\ 1 & b^2 & c^2 + 1 \end{vmatrix}$

by applying $R_2 \rightarrow R_2 -R_1$, $R_3 \rightarrow R_3 -R_1$

$$== (1 + a^{2} + b^{2} + c^{2}) \begin{vmatrix} 1 & b^{2} & c^{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

by Expansion along C₁

$$=(1 + a^2 + b^2 + c^2) (1 \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix})$$

$$=(1 +a^2+b^2+c^2)$$

Homework: Complete Q.20, and solve Q.30, Q25ii),Q31